About the Presenter

Jeff M. Miller, PE, ENV SP

Tim Murphy is a Business Development Manager for Schneider Electric's Water Wastewater Competency Center. Tim has a BA in Administration and Marketing. He has worked in the Water Market for 16 years in various roles from Variable Frequency Drive Product Marketing to Drive Application Engineer. He has a range of experience supporting many projects throughout the entire Water Market Value Chain over the past 16 years. He is an active member of AWWA - WEA in multiple states.
Who has electrical equipment that is ....?

If you had seats this comfortable you would just fall asleep.
Who knows if their electrical equipment has …?

... been Arc Flash Labeled?
... been opened for inspection?
... had the interior and exterior cleaned?
... had the connections tightened?
... had the grounds tested?
... had mechanical maintenance?
... had a Themographic Survey (IR)

How many times do we need to raise our hands? I’m getting tired.
When is electrical distribution equipment operating?

- When it is energized?
- When it is performing its function?
- What equipment do you know of that is turned on for 20+ years without being turned off?
Are You a Gambler?

- How much do you put at risk?
- Do you know the rules?
- Do you know the odds?
- What would you do to better the odds?
What are the main causes of equipment breakdown?

Source: Schneider Electric expert assessment & Hartford Boiler Steam

- 34% Contacts or faulty parts
- 17% Work incorrectly carried out
- 8% Environment
- 9% Faulty equipment
- 7% Overload
- 9% Humidity
- 5% Electrical disturbance (excluding lightning)
- 5% Faulty insulation
- 4% Lightning
- 1% Other
- 1% Shocks

According to IEEE, the rate of electrical component failures is three times higher in facilities that do not perform preventive maintenance on their electrical systems.
How Dangerous is Electrical Equipment?

- Load Power?
- Feeder Power?
- Supply Power?
- Fault Energy?

Roughly 1A @ 480VAC = 1hp
ELECTRICAL EQUIPMENT

FORENSIC PHOTOGRAPHS
TELL A STORY
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
Forensic Photographs Tell a Story
ELECTRICAL EQUIPMENT

THE GREY BOXES
Electrical Distribution Equipment

- **Active Components**
  - Circuit Breakers
  - Trip Units
  - Relays
  - PLC’s, TVSS
  - Fuses
  - Racking Mechanisms
  - Monitoring Components

- **Passive Components**
  - Structure
  - Bussing
  - Lugs/Lug Pads
  - Bracing
Electrical Distribution System
Active Components

• Mechanical Components
  • Involve moving parts, therefore they must be maintained in order to operate as intended
  • Will wear out over time
  • Some components require replacement upon use

• Solid State Components
  • The rise in utilization of solid state components gives rise to another mode of failure that cannot be easily detected
  • Typically cannot be maintained and must be replaced upon failure
  • Obsolescence is a key consideration
Electrical Distribution System
Passive Components

• Structural Components
  • Require minimal maintenance (more monitoring)
  • If properly cleaned and monitored in a controlled environment, the passive components do not wear over time, however:
    • Dust, dirt and moisture build-up can affect the insulation system
    • Loose connections due to improper torque and/or vibration over time can lead to excessive heat and failure
  • If well maintained, these components substantially outlast the life span of the Active Components in a piece of electrical distribution equipment
ELECTRICAL EQUIPMENT MAINTENANCE AND CARE

WHAT CAN I DO?
ELECTRICAL EQUIPMENT MAINTENANCE AND CARE

- Maintenance
  - Corrective
  - Preventative
  - Predictive

- Inspections
  - Visual
  - Infrared Camera

- Assessments
  - Testing
  - Themographic Survey (IR)
  - Forensic Analysis
  - Report by a Specialist
Approaches to Maintenance

● Corrective Maintenance
  ● Repair work conducted after a failure or breakdown.

● Preventive Maintenance
  ● A specified list of inspections, cleaning, testing and part replacement during a predefined, time-based schedule.

● Predictive Maintenance
  ● Scheduled based on diagnostic evaluations. Also factors in equipment age, environmental stresses, criticality of equipment, etc to decide on schedule.
Inspections and Assessments
Common Causes of Electrical Equipment Failure

- Thermal Stresses
- Mechanical Stresses
- Insulation Breakdown or Dielectric Deterioration
- Vibration (internal and external)
- Contamination (dust, dirt, foreign particles, animals, critters)
- Exposure to Chemicals (liquid or vapor)
- Inadvertent Contact
- Loose Connections
- Moisture and Water Damage
- Corrosion, Oxidation, Reduction
- Corona and Electron Tracking
- Protective Devices that do not Operate and Designed and Intended
- Lack of a Regular Scheduled Preventive Maintenance Program
Inspections and Assessments
Common Causes of Electrical Equipment Failure

The vast majority of all anomalies and dysfunctions of power distribution system can be directly related to ineffective or deteriorated bonding and grounding system.
Summary
Themographic Survey

● A Themographic Survey employs infrared imaging to only detect "relative" heat rise or "hot spots" on the surface of equipment and can detect heat rise within the interior of equipment.

● Hot spots are often an indication of loose connections or overload conditions.

● TS can be routinely performed without power interruptions.

● In order to perform a TS proper PPE must be employed, maintained, and worn.

● A TS does NOT reveal all abnormal conditions.

● A TS does NOT reveal all deteriorate conditions.

● A TS should NOT be employed in lieu of a regular PM Program.
RISK PREVENTION AND MITIGATION

WHAT IF IT IS TOO LATE?
RISK PREVENTION AND MITIGATION

- Maintain
- Replacement Assemblies
- Modernize / Upgrade
- New
Maintain Equipment vs. Modernize?

● Even properly maintained equipment is subject to two key phenomena:
  ● Ultimately degrades and reaches the end of its useful life
  ● No longer sustainable solution due to technological advances

● Factors to consider:
  ● Age of equipment
  ● Operating environment
  ● Availability of spare parts
  ● Reliability of system components
  ● Cost of ongoing maintenance
  ● Emerging technology
  ● Worker safety
New Equipment vs. Modernize?

- Downtime Costs
- Reliability of System Components
- Risk Catastrophic Failure
- Parts Obsolete/Parts Availability
- Equipment Location
- Safety Issues
- Designs per ANSI and IEEE standards
Modernization Solutions

- Cost-effective options
  - Reconditioning
  - Replacement
  - Retrofill

- Benefits
  - Reduced maintenance and operating costs
  - Improved reliability
  - Increased capabilities
  - Less downtime and cost for installation vs. new equipment

Bar chart compares the total installed costs for low-voltage switchgear installations. Costs are representative of price differences. Actual cost differences depend on the content and circumstances of each project.
Circuit Breaker Options

● Reconditioning, Refurbishing, Retrofit- Conversions
● Direct Replacement Circuit Breakers
  ● LV and MV
● Retrofill Solutions
  ● LV and MV
● Replacement Switchgear
  ● Custom
  ● Match-in-Line
  ● Standard

Available for any manufacturer’s equipment.
Why Choose Reconditioning?

- Upon completion of reconditioning, the circuit breaker performs to manufacturer’s original specifications or “like new” condition.
- The circuit breaker’s condition is extensively documented, i.e., “As Found” and “As Left” inspection completed for each unit.
- Many companies offer warranties for parts and workmanship.
Direct Replacement Breakers (LV)

- 15 – 30 minute circuit outage required
- Modern technology – all new electrical/mechanical parts
- No disruption to existing cables
- Lower installed cost when compared to new switchgear option
- Greatly reduced spare parts inventory. One style of replacement breaker will replace many different existing equipment designs: ITE, Westinghouse, GE, FPE, Allis Chalmers, etc
Direct Replacement Breakers (LV)

- Reduced Maintenance requirements
- Most parts from the complete spectrum of replacement breakers are interchangeable
- Can be used to reduce Arc Flash incident energy levels within system
Retrofit Breakers

- A brief initial outage to confirm key dimensions shall be required
- The retrofit process consists of replacing the existing circuit breaker and its related components
- A pre-engineered “erector kit” is manufactured
- Typical applications would be the Main/Tie breakers along with switch-to-breaker upgrade
- Installation then requires an extended bus outage which may range from 8 – 16 hours
- Switch-to-breaker conversions require a mini-study for trip unit settings
Typical Retrofill Example

- Masterpact M/MP/MC breakers used in OEM equipment
- Breaker is obsolete and parts limited availability
- Engineered solution to modernize the device

- Outage to obtain critical dimensions
- Engineered to maintain proper equipment ratings
- Improve reliability
- Outage to install
- Upgrade with communications and monitoring features
- Maintain existing asset
Options for MCC Upgrade

- Solid-state overload
- Upgrade to an intelligent MCC with door mounted display
- Solid-State Starter (Soft-Start)
- Variable Frequency Drives
  - Upgrade processes
  - Improve energy efficiency
Modernization Project Example

- LV direct replacement breakers and monitoring system install
- Each feeder/main breaker trip unit communicates data for energy analysis
- Enhanced safety features of upgrade and improved system reliability
- Existing asset upgraded at reduced cost/downtime compared to a new install

Before

After (180° view)
Modernization Project Example

- Retrofill outdated MV switchgear with 19 circuit breakers and solid-state digital relays
- New circuit breakers’ vacuum bottles prevent exposure to an arc
- More consistent trip unit reaction time
- Old elevator-type racking system was eliminated, reducing risks to electricians
- More reliable electrical distribution system
- Significant cost savings as opposed to a total switchgear replacement

Did You Know? New switchgear is usually smaller than the equipment it is designed to replace. The existing conduit may need to be moved and cabling replaced or spliced. Both are expensive and time consuming tasks, often costing more in labor and material than the cost of the new equipment.
New Equipment and Custom Switchgear and Integration

◆ Non-Standard Dimension
  □ Reduced height, depth, or width

◆ Non-Standard Ratings
  □ Interrupting Ratings
  □ Continuous Current

◆ Custom Footprints
  □ Match existing cutouts
  □ Match existing cable connection locations
  □ Meet space restrictions

◆ Add in Line
  □ Exactly match existing cubicles
  □ Doors, relays, wiring

◆ Custom modifications and wiring
  □ Third Party Integration
  □ High Complexity, Compressed Lead Times
RISK PREVENTION AND MITIGATION

ARC FLASH MITIGATION UPGRADE SOLUTIONS
Remote Operation

- Switching – creates a potential hazard
- Hard to avoid completely
- Do you have to do it “in the line of fire”? 
- Several remote options available:
  - Pendant
  - Permanently-mounted remote control panel
  - SCADA system
- Remember, energy drops roughly as 1/d^2
Remote Racking

- Even more opportunity for things to go wrong when racking a breaker
- Many types of switchgear – can rack with the door closed
- Still requires worker to be in close proximity
- Remote racking – similar principle to Remote Operation – remove worker to outside the flash protection boundary
Infrared Viewing Windows

- Removes worker from danger zone
- Infrared scan cables and bus connections without opening equipment doors
- Helps Limit Arc Flash Injuries
- Available for new and retrofit switchgear, switchboards, MCCs, transformers, etc
Remote Voltage Indication

- Part of lockout/tagout process is to verify equipment dead
  - Equipment considered energized until verified dead
  - Have to open up equipment to verify!
- Can be problematic when arc-flash levels are high
- Products on market now to give remote indication
Time Delay Switches

- Fits into existing breaker switch mounts
- No special wiring or relaying
- Local control of 10 sec delay
- Can be programmed for longer delays
- May not be suitable for all applications
Arc Flash Circuit Breakers

- Specifically designed to limit high level arcing fault currents.
- Provide protection comparable to current limiting fuses for high level faults but provides better protection than fuses at lower current levels.
Are You Willing to Roll the Dice?
The House Always Wins Eventually!
Questions?

Tim Murphy
Business Development Manager
Water Wastewater Competency Center

2525 E. Royalton Rd.
Broadview Heights, OH 44147
Mobile: 440-497-8023
TimP.Murphy@Schneider-Electric.com
www.schneider-electric.com

Jeff M. Miller, PE, ENV SP
Solutions Architect
Water Wastewater Competency Center

8001 Knightdale Blvd.
Knightdale, NC 27545-9023
Office: 919.266.8360 | Mobile: 919.824.9114
JeffM.Miller@Schneider-Electric.com
www.schneider-electric.com
Schneider Electric
Electrical Safety and Modernization Related Links

- Solutions for OSHA and NFPA 70E Compliance

- Modernization & Upgrade Solutions

- Electrical Safety for Contractors

- Modernization for Safety

- Arc Protection Relays System

- LV Arc Resistant Switchgear

- LV Arc resistant MCC

- MV Arc Resistant Switchgear
Short Presentation Abstract

Modern day utilities depend on electrical power for operation of critical equipment. System reliability and personnel safety are both negatively impacted by aging and poorly maintained electrical equipment. Many risks are unknown or unidentified, so proper preventative maintenance and emergency contingency planning may not be in place. There are many modernization alternatives to doing a complete "rip and replace" in order to mitigate these risks while satisfying financial constrictions, improve personnel safety and ensure operational continuity. This presentation will discuss aging electrical system threats, vulnerabilities, O&M methods, electrical modernization alternatives, and contingency planning methods used to mitigate risk.
Long Presentation Abstract

Modern day utilities depend on electrical power and related systems for operation of their critical equipment, processes, and systems. System reliability and personnel safety are both negatively impacted by aging and poorly maintained electrical equipment. Most utilities have a false sense of security when it comes to power distribution equipment and fail to understand the substantial risks taken as well as the possible impacts to their operation. Recent studies indicate that between five and ten arc flash explosions occur in electrical equipment every day in the United States in addition to other non-explosive catastrophic electrical equipment failures. Although arc flash labeling and safety is important, it has recently taken the attention away from many other important aspects of maintaining a reliability and safe power distribution system. Many risks are obvious to the casual observer and can be prevented by proper maintenance and inspections, but others may be unknown to utility staff, so proper planning and emergency contingencies may not be in place to minimize impacts to the utility. Aging electrical infrastructure has the capacity to cause long term outages and severe personnel safety incidents.

Of course, this isn’t all due to old equipment, so rather than doing a complete "rip and replace" there are things that can be done to mitigate these risks, improve personnel safety and ensure operational continuity.

This presentation will discuss aging electrical system threats, vulnerabilities, and risks using forensic investigation examples of failed electrical equipment. Evidence is provided to show how proper maintenance, inspections, and assessments can prolong the life of electrical equipment while ensuring reliability and safety throughout its life. When equipment can no longer be maintained or enhanced safety and reliability is desired, the pros and cons of replacing verses modernizing electrical equipment are compared. Various low cost modernization methods and options are presented as an alternative to replace with new. In addition to the retrofit options, newer “retrofill” options will be presented as a method to prevent unnecessary capital expenditures and system outages.

In addition, O&M methods, electrical architecture improvements, contingency planning, and new arc-resistant equipment designs being used to mitigate risk. Various program and project implementation methods for making improvements will be discussed. Real world project examples will be given highlighting the challenges and successes of these types of improvements.