How to Maximize the Value of Polymers in Wastewater Treatment Processes

Yong Kim, Ph.D.
Technical Director
UGSI Chemical Feed, Inc.
Coagulation and Flocculation

Coagulation
- Double-layer compression (charge neutralization)
- Enmeshment (sweep coagulation)
 - Clay suspension + Ferric chloride

Flocculation
- Polymer Bridging
 - Clay suspension + Ferric chloride + Polymer (0.1 - 1 ppm)
Flocculation - Bridging by Polymer Molecules

Extended cationic polymer molecule attracts negatively-charged suspended particles
Structure of Polymer

• Polymer Flocculant, Linear Polymer, Polyelectrolyte
• Chained Structure by Repetition of Monomers

\[\ldots - \text{CH}_2 - \text{CH} - [\text{CH}_2 - \text{CH}]_n - \text{CH}_2 - \text{CH} - \ldots \]

\[
\begin{array}{ccc}
& \text{CO} & \text{CO} & \text{CO} \\
\text{NH}_2 & \text{NH}_2 & \text{NH}_2 \\
\end{array}
\]

Most polymers in water industry are acrylamide-based.

If molecular weight of polymer is 10 million, the number of monomers in one polymer molecule, “degree of polymerization”

\[n = \frac{10,000,000}{71} \]
\[= 140,850 \]

(mol. wt. of monomer, acrylamide = 71)
Emulsion Polymer - 40% active

$d = 0.1$ to $2 \, \mu m$

- Hydrocarbon Oil: 30%
- Polymer Gel: Polymer 40%
- Water: 30%
- Stabilizing surfactant
- Inverting (breaker) surfactant

To maximize the value of Inverting Surfactant:
* 0.75% - 1.0% primary mixing
* 0.25% - 0.5% secondary mixing (dilution)

* AWWA Standard for Polyacrylamide (ANSI-AWWA B453-96), 10 - 11, 1996
How to Maximize the Value of Inverting Surfactant?

Primary mixing at high % + Secondary mixing at feed %

Better Design

Primary Mixing

Polymer 1 gph

Water 100 gph

1.0%

Secondary Mixing

Water 100 gph

0.5% solution

Primary Mixing

Polymer 1 gph

Water 200 gph

0.5%

0.5% solution
Storage of Emulsion Polymer

- **Separation (stratification)**
 - Drum (Tote) Mixer
 - Recirculation Pump

- **Settled Out Polymer Gels**

- **Separated Oil**

- **Moisture Intrusion**
 - Drum (Tank) Dryer

* Image of a drum showing separation and moisture intrusion.
Recommended Dilution Water Quality

Ionic strength (Hardness): multi-valent ions; adverse effect
- Soft water helps polymer molecules fully-extend faster
- Hardness over 400 ppm may need softener

Oxidizer (chlorine): detrimental to polymer chains
- Maintain less than 3 ppm

Temperature: higher temperature, better polymer activation
- In-line water heater for water lower than 40 °F
- Water over 100 °F may damage polymer chains

Suspended solids: strainer recommended if > 10 ppm

pH: negligible effect within pH 3 - 10

David Oerke (CH2M), et al., 2014 Biosolids Conf. - 20% less polymer with warm water, 40% more polymer with 140°F sludge
Effect of Chlorine (Oxidizing Chemical)

Oxidizing chemicals break down polymer chains

![Graph showing the effect of chlorine on viscosity]

- **Viscosity** in cP decreases as **Cl₂ ppm** increases.
- The viscosity decreases from approximately 1200 cP at 0 ppm Cl₂ to around 100 cP at 10 ppm Cl₂.
Polymer Activation (Dissolution)

1. Initial Wetting (Inversion)
 Sticky layer formed
 High-energy Mixing Required

2. Dissolution
 “Reptation” by de Gennes (1971)*
 Low-energy Mixing Required

Mixing Effect on Polymer Activation

Viscosity of polymer solution
(prepared in 600 mL beakers)
- Beakers 1, 2: one-stage mixing
- Beaker 3: two-stage mixing

Two-stage mixing resulted in polymer solution of much better quality
* High energy first: prevent fisheye formation
* Low energy followed: minimize polymer damage
Development of Two-stage Mixer

1-stage mixer

2-stage mixer

G-value, mean shear rate (sec⁻¹)

1,700

1,100

4,000
Mixing Effect on Polymer Activation

Two-stage mixing \rightarrow significant increase in polymer solution viscosity

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Mixing unit</th>
<th>Conc. %</th>
<th>Viscosity cP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anionic</td>
<td>1-stage</td>
<td>0.50</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>2-stage</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(27%↑)</td>
</tr>
<tr>
<td>Cationic</td>
<td>1-stage</td>
<td>0.50</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>2-stage</td>
<td></td>
<td>523</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(18%↑)</td>
</tr>
<tr>
<td>Nonionic</td>
<td>1-stage</td>
<td>0.50</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>2-stage</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12%↑)</td>
</tr>
</tbody>
</table>
PolyBlend Dry Polymer System

High Energy Mixing

\[G = 15,000 \text{ /sec} \]
\[(3,450 \text{ rpm, } <0.5 \text{ sec}) \]

Low Energy Mixing

\[(115 \text{ rpm, 20 min}) \]
\[(0.5\% - 0.75\%) \]

Post-dilution

\[(0.1\% - 0.2\%) \]

DD4

DP800

Final Feed Skid
Dry Disperser (DD4) for Initial Wetting

Very High-Intensity Mixing for Short Time

\[G = 15,000 \text{ /sec} \]
\[@ 3,450 \text{ rpm} \]
\[\text{for < 0.5 sec} \]

Disperses Individual Polymer Particles

* No Fisheye Formation
* Shorter Mixing Time in Next Stage
Mixing Tank for Dissolution of Dry Polymer

Patented Hollow-Wing Impeller
- No Weissenberg Effect

Large Impeller, \(\frac{d}{D} > 0.7 \)
- Uniform Mixing Energy

Low RPM, 60 - 115 rpm
- Low-intensity Mixing
- Minimize Damage to Polymer Chain

Square Tank Design
- No Wessenberg Effect
- No Baffles Needed, No Dead Zone

Shorter Mixing Time – Due to DD4
- 20 Minutes for Cationic Polymer
- 30 Minutes for Anionic Polymer
- Minimize Damage to Polymer Chain
Fairfield-Suisan, CA - Sewer District

- Solano County, CA, 40 miles North San Francisco
- Design capacity: 24 MGD
- Population served: 135,000
- Tertiary treatment/ UV disinfection
- Polymer use for dewatering (screw press) and thickening (GBT)

- Problems with existing polymer system
 - Struggled to make proper polymer solution
 - Polymer performance inconsistent
 - Frequent maintenance issues
Pilot Testing with Two Polymer Mix Equipment

Existing polymer system
• Initial wetting: educator-type hydraulic mixing
• Mixing: two (2) > 3,000 gal mix/age tanks

UGSI dry polymer system
• Initial wetting: high-energy mechanical mixing
• Mixing: two (2) 360 gal mix tanks
Fairfield-Suisan SD – Pilot Test Results

- **Dewatering by Screw Press** (3/21 – 4/21)
 - Less polymer consumption
 - 1200 lb super sack lasted from 3.4 to 4.4 days
 - Daily usage from 359 lbs to 278 lbs (23% less)
 - $4,300/month polymer savings
 - Better cake solids
 - 14% ~ 16% to average 16.4%

- **Thickening by GBT** (4/24 - 5/23)
 - Less polymer consumption
 - Daily usage from 40 lbs to 17.5 lbs (56% less)
How could we achieve this?

Initial high-energy mixing is a critical factor

Polymer swelling time, $t_s \sim (\text{diameter})^2$

Tanaka (1979)*

Assume $t_s \rightarrow 1 \text{ min}$

$t_s \rightarrow 100 \text{ min}$

Initial high energy mixing (DD4) \rightarrow No fisheye formation \rightarrow
Significantly shorter mixing time \rightarrow Minimum damage to polymer structure \rightarrow
Better quality polymer solution \rightarrow Polymer savings

Thank You

Please contact Yong Kim with any questions

Yong Kim, PhD
UGSI Chemical Feed, Inc.
1901 W. Garden Road
Vineland, NJ 08360
Phone: 856-405-5756
E-mail: ykim@ugsi.com
Questions & Answers