Local Section Seminar

Basics of UV Disinfection

April 17, 2014

Joseph Moore, P.E.
DuBois-Cooper Associates, Inc.
Presentation Outline

Basics of Ultraviolet (UV) Disinfection

Components of UV Disinfection Equipment

Design Considerations

UV Dose

True Cost of Ownership
Basics of UV Disinfection
What is Disinfection?

Disinfection is the reduction of harmful (=pathogenic) microorganisms to a concentration which is not harmful anymore.

Examples of the most dangerous pathogens in drinking & waste water:

<table>
<thead>
<tr>
<th>Group</th>
<th>Kind</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIA</td>
<td>Coliforms</td>
<td>Fever, intestinal disease</td>
</tr>
<tr>
<td></td>
<td>Salmonella</td>
<td>Typhoid fever</td>
</tr>
<tr>
<td></td>
<td>Vibrio</td>
<td>Cholera</td>
</tr>
<tr>
<td></td>
<td>Legionella</td>
<td>Pneumonia</td>
</tr>
<tr>
<td></td>
<td>E.coli</td>
<td>Fever, gastro enteral disease</td>
</tr>
<tr>
<td>VIRUSES</td>
<td>Hep A</td>
<td>Hepatitis</td>
</tr>
<tr>
<td></td>
<td>Polio</td>
<td>Polio</td>
</tr>
<tr>
<td>PARASITES</td>
<td>Cryptosporidias</td>
<td>Intestinal disease</td>
</tr>
<tr>
<td></td>
<td>Amoeba</td>
<td>Amebiasis</td>
</tr>
</tbody>
</table>
The Principle of UV Technology

Inactivation of pathogenic microorganisms due to photooxidation of DNA

- X-rays
- Ultraviolet
 - Vacuum-UV
 - UV-C
 - UV-B
 - UV-A
- Visible Light
- Infrared

Wavelength (nm)

Hg-Low pressure Lamp 254 nm
HOW UV WORKS

• UV light penetrates the cell walls of bacteria, virus and protozoa

• The UV energy permanently alters the DNA of the microorganism

• Microorganisms are “inactivated” and unable to reproduce or infect
The Mechanism

Effects of UV irradiation on DNA

UV-light $h\nu$
The Result

Pure and safe water with UV

Distinct from chlorine and membrane filtration:

- Easy and reliable to apply
- No change of water chemistry
- No disinfection by-products (DBPs) or residuals
- No effect on odor and taste
- No regrowth of viruses, bacteria and parasites
- No corrosion
- No hazardous chemicals
- No resistance as with chlorine and antibiotics
- No concentration, no sludge
Comparison to Other Disinfection Technologies

<table>
<thead>
<tr>
<th></th>
<th>Toxic by-products (DBP)</th>
<th>Requires chemical inventory</th>
<th>Biofilm removal</th>
<th>Residual disinfectant</th>
<th>Disinfection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bacteria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crypto</td>
</tr>
<tr>
<td>Ozone</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>UV</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Chlorine dioxide</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Membrane filtration</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Other chemicals</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Components of UV Disinfection Equipment
Open Channel UV Unit

- Banks with modules
- UV lamps in quartz sleeves
- Automatic mechanical wiping system or chemical dip tanks
- UV intensity sensor / flow meter (dose pacing)
- Level control
- Ballast cards / controls
- Air compressor for wiping system
- One or multiple channels
- Lifting equipment
Closed Vessel UV Unit
Open Channel UV Equipment - 45°

- 45° vertical incline staggered lamp system to reduce footprint
- Automatic built-in lifting device
- Automatic mechanical wiping system
Open Channel UV Inserts

- Small to medium flow wastewater applications (up to 5 MGD)

- 1 or 2 banks, up to 48 lamps

- Reduced installation cost

- Options available:
 - Indoor vs. outdoor cabinet
 - Concrete, SS, or PE channel
 - Sensor-based control
 - Automatic mechanical wiping system
 - SCADA Communication
Comparison Between Low Pressure High Output (Lo-Hi) and Medium Pressure (MP) Lamps

Lo-Hi lamps are concentrated in the 254 nm wavelength making them very efficient = less power for the same disinfection.
Ultraviolet Lamp Technology Comparison

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Low Pressure Lo-Lo</th>
<th>Low Pressure Lo-Hi</th>
<th>Medium Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption</td>
<td>40 to 80 W</td>
<td>250 to 315 W</td>
<td>3000 to 9000 W</td>
</tr>
<tr>
<td>UV-C output</td>
<td>15 to 35 W</td>
<td>100 to 150 W</td>
<td>300 to 900 W</td>
</tr>
<tr>
<td>UV-C Output Efficiency</td>
<td>38%</td>
<td>41 to 48 %</td>
<td>10-15%</td>
</tr>
<tr>
<td>Output Adjustment</td>
<td>100%</td>
<td>50-100%</td>
<td>30-100%</td>
</tr>
<tr>
<td>Operating Temp.</td>
<td>90°C</td>
<td>100°C</td>
<td>600-1000°C</td>
</tr>
<tr>
<td>Lamp Life (hours)</td>
<td>9,000</td>
<td>12,000 to 14,000</td>
<td>3,000 to 8,000</td>
</tr>
</tbody>
</table>
Design Considerations
UV Design Considerations

Flow Rate – average and peak
Channel Hydraulics (width, depth and headloss)

Water quality:
- Inlet and effluent fecal coliform (log reduction)
- Total suspended solids
- Iron, manganese, hardness
- Ultraviolet transmittivity (UVT) @ 254 nm wavelength

One or multiple channels (or flow streams)

Redundancy Requirements (which flow?)
Key Design Points of UV Equipment

• **UV Dose** (10 States, Point Source Summation and Bioassay)

• **UV lamp aging factor** (end of useful life)
 Typically max of 0.85 to 0.88

• **Quartz sleeve fouling factor**
 Typically 0.90

• **Results in number of UV lamps**
UV Dose for Wastewater

UV Dose = Quantity of Cell Inactivation
UV Dose = UV Intensity x Retention Time

\[\text{[mJ/cm}^2\text{]} = \text{[}\mu\text{W/cm}^2\text{]} \times \text{[s]} \]

Intensity is a function of:
- lamp output
- lamp age
- quartz sleeve transmissivity (coating)
- water quality (UV transmittance)
UV Dose Calculation Approaches for Wastewater

Regulatory (10 States Standards)

- minimum UV dose of 30,000 μW s/cm2 (or 30 mJ/cm2)

Calculated sizing models:

- PSS (Point Source Summation) - theoretical

Biologically verified methods (bioassays):

- Based on real data / Target a specific microorganism (MS2 or T1)

- Should be validated by 3rd party
PSS (Point Source Summation)

- Purely mathematical approach
- Not based upon a site-specific water quality and target organism
- Not based upon microbiological data
- Adjustment for lamp ageing and fouling
- Introduced in 1986 EPA design manual
Bioassays for Wastewater

• Based on real data
• Take hydraulic performance into account
• Take real intensity distribution into account
• Target a specific microorganism (T1 or MS2)
• Site-specific (water quality/organism)
• Adjustment for lamp ageing and fouling
Using a Surrogate of Similar Sensitivity as the Target Microorganism Provides an Accurate UV-Dose Response Design
Bioassay Doses Can Be Equated to PSS Calculated UV Dose Methodology to Satisfy Necessary Guidelines

10 State Standards

This process should be limited to a high quality effluent having at least 65% ultraviolet radiation transmittance at 254 nanometers wave length, and BOD and suspended solids concentrations no greater than 30 mg/L at any time. The UV radiation dosage shall be based on the design peak hourly flow. As a general guide in system sizing for an activated sludge effluent with the preceding characteristics, a UV radiation dosage not less than 30,000 μW·s/cm² may be used after adjustments for maximum tube fouling, lamp output reduction after 8760 hours of operation, and other energy absorption losses.

<table>
<thead>
<tr>
<th></th>
<th>T1 Bioassay Dose</th>
<th>PSS Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example project</td>
<td>12.6 mJ/cm²</td>
<td>40 mJ/cm²</td>
</tr>
</tbody>
</table>
UV Bioassay Validation

- Procedure to determine the performance of a UV system
- Required because no methodology for direct measurement of microorganisms is available
- Combination of laboratory bench scale testing (Collimated Beam Device) and UV reactor field test
- Because the target organism is too dangerous (e.g. Cryptosporidium) or shows too much variability (e.g. Fecal coliforms), microbial surrogates (e.g. MS2, T1) are being used
- Ideally, the microbial surrogate should have the same sensitivity to UV light as the target pathogen
Fecal Coliform UV Dose Response Curve

Figure 3.7: Fecal Coliform Dose-Response Curve for Theresa St. Wastewater
UV Protocols

• National Water Research Institute (NWRI) Guidelines
 o 2003 (updated in 2012)

• EPA UV Disinfection Guidance Manual (UVDGM)
 o 2006

• International UV Association Protocol (IUVA)
 o 2011
Cost of Ownership
UV Cost of Ownership

Equipment Capital Cost

Installation

Electrical Costs

Equipment Consumables
- UV Lamps – 10,000 to 15,000 hours (1 ½ to 2 years)
- Ballast Cards – estimate 5 to 8 years

Equipment Replacement (at end of Equipment Life)
Thank You!

QUESTIONS