MWEA WWAdCon 2013
Grandville CWP Egg Shaped Digester
Unconventional Startup

Presented by: Brian Vu, City of Grandville, and
Brian Hannon, P.E., Moore & Bruggink
Presentation Agenda

Brief Introduction to Project
 Solids Handling before and after
 Why ESD vs. Conventional

Discussion of ESD Startup
 Micro-digestion Technique
 Seed Sludge
 Lab Analysis

Operator Training

Questions
City of Grandville Overview
Grandville Clean Water Plant
Project Overview (Expansion and Renovation)
Solids Handling Prior to Project

- Aerobic Digestion
- Anaerobic Digestion
- Thickening
- Storage
- Land Application
Solids Handling Prior to Project

- Aerobic Digestion
- Anaerobic Digestion
- Thickening
- Storage
- Land Application
Solids Handling Prior to Project

- Aerobic Digestion
- Anaerobic Digestion
- Thickening
- Storage
- Land Application
Solids Handling after Expansion
Solids Handling Expansion
Solids Handling Expansion
Why Egg Shaped Anaerobic Digester (ESD)?

- Process
- Footprint
- Cost (life cycle)
 - cleaning
 - efficiency
- Client comfort
- Ability to go to Class A
Why Egg Shaped Anaerobic Digester?

- Process
- Footprint
- Cost (life cycle)
 - cleaning
 - efficiency
- Client comfort
- Ability to go to Class A
Why Egg Shaped Anaerobic Digester?

- Process
- Footprint
- Cost (life cycle)
 - cleaning
 - efficiency
- Client comfort
- Ability to go to Class A
How the ESD Works:
How the ESD Works:
How the ESD Works:
Combined Heat and Power Unit

Dual Fuel (bio-gas and natural gas)
- 280 kW using Bio-gas,
- 360 kW using Nat Gas

Internal exchangers to capture heat from engine cooling jacket and exhaust

Efficiency of 86%
How do you go from a 183,000 gallon anaerobic digester to a 1 million gallon anaerobic digester?
What is Micro-Digestion?
Micro-Digestion Advantages

• Good Seed Sludge starts the process
• Complete Control
• Process Allowed to Acclimatize
• No loss of Bio-Mass
• Steady State Operation Quickly
• Alkalinity Builds Quickly
• Temperature Control
What do you need for startup?

- Identify Vessel Characteristics
- Starting Sludge Volume
- Initial Seed Volume at least 10% of Vessel Volume
- Feed based on 18 HRD of Vessel Volume
- Environmental Control
ESD Startup Challenges

- 90,000 gallons of seed sludge to start.
- 30,000 gallons Raw sludge
- Seed sludge screening
- Keeping “Old Conventional Digester” Operational
- Storing Seed Sludge
- Available Sludge
- Clean Secondary Digester
Secondary Digester Cleaning
Secondary Digester Cleaning
How to Prepare Seed Sludge?
Screening Seed Sludge
Seed Sludge

• Collected 217,610 gallons of seed sludge over two weeks
• Seed Sludge was pumped over to the ESD in three days
• Stored Temp: 67F
• Volatile Acids: 353 mg/L
• Alkalinity 460 mg/L
• pH: 6.1
Mixing and Heating

- Mixing and Heating Startup

- Operating Temperature was reached in less than 24 hrs. from a start of 67F to 98F
<table>
<thead>
<tr>
<th>Date</th>
<th>Micro-Dig Vol.</th>
<th>Depth (ft)</th>
<th>HRT (days)</th>
<th>Feed (gals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Mar</td>
<td>295000</td>
<td>29.1</td>
<td>18</td>
<td>17000</td>
</tr>
<tr>
<td>9-Mar</td>
<td>312000</td>
<td>29.9</td>
<td>18</td>
<td>17000</td>
</tr>
<tr>
<td>10-Mar</td>
<td>329000</td>
<td>30.7</td>
<td>18</td>
<td>18000</td>
</tr>
<tr>
<td>11-Mar</td>
<td>347000</td>
<td>31.5</td>
<td>18</td>
<td>19000</td>
</tr>
<tr>
<td>12-Mar</td>
<td>366000</td>
<td>32.3</td>
<td>18</td>
<td>20000</td>
</tr>
<tr>
<td>13-Mar</td>
<td>386000</td>
<td>33.3</td>
<td>18</td>
<td>21000</td>
</tr>
<tr>
<td>14-Mar</td>
<td>402000</td>
<td>34.2</td>
<td>18</td>
<td>23000</td>
</tr>
<tr>
<td>15-Mar</td>
<td>430000</td>
<td>35.2</td>
<td>18</td>
<td>24000</td>
</tr>
<tr>
<td>16-Mar</td>
<td>454000</td>
<td>36.2</td>
<td>18</td>
<td>25000</td>
</tr>
<tr>
<td>17-Mar</td>
<td>479000</td>
<td>37.3</td>
<td>18</td>
<td>27000</td>
</tr>
<tr>
<td>18-Mar</td>
<td>506000</td>
<td>38.4</td>
<td>18</td>
<td>28000</td>
</tr>
<tr>
<td>19-Mar</td>
<td>534000</td>
<td>39.6</td>
<td>18</td>
<td>30000</td>
</tr>
<tr>
<td>20-Mar</td>
<td>564000</td>
<td>40.9</td>
<td>18</td>
<td>31000</td>
</tr>
<tr>
<td>21-Mar</td>
<td>590000</td>
<td>42.3</td>
<td>18</td>
<td>33000</td>
</tr>
<tr>
<td>22-Mar</td>
<td>628000</td>
<td>43.7</td>
<td>18</td>
<td>35000</td>
</tr>
<tr>
<td>23-Mar</td>
<td>663000</td>
<td>45.5</td>
<td>18</td>
<td>37000</td>
</tr>
<tr>
<td>24-Mar</td>
<td>700000</td>
<td>47</td>
<td>18</td>
<td>39000</td>
</tr>
<tr>
<td>25-Mar</td>
<td>739000</td>
<td>48.8</td>
<td>18</td>
<td>41000</td>
</tr>
<tr>
<td>26-Mar</td>
<td>780000</td>
<td>50.7</td>
<td>18</td>
<td>43000</td>
</tr>
<tr>
<td>27-Mar</td>
<td>823000</td>
<td>53</td>
<td>18</td>
<td>46000</td>
</tr>
<tr>
<td>28-Mar</td>
<td>869000</td>
<td>55.6</td>
<td>18</td>
<td>46000</td>
</tr>
<tr>
<td>29-Mar</td>
<td>915000</td>
<td>58.5</td>
<td>20</td>
<td>46000</td>
</tr>
<tr>
<td>30-Mar</td>
<td>961000</td>
<td>62.2</td>
<td>21</td>
<td>46000</td>
</tr>
<tr>
<td>31-Mar</td>
<td>1007000</td>
<td>68</td>
<td>22</td>
<td>46000</td>
</tr>
</tbody>
</table>
Lab Analysis on Raw Sludge and Digested Sludge

Total Solids

Volatile Solids

Alkalinity

pH

Volatile Acids
<table>
<thead>
<tr>
<th>DATE</th>
<th>ALK, mg/L</th>
<th>pH</th>
<th>V. Acids, mg/L</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Mar</td>
<td>1400</td>
<td>7.3</td>
<td>61</td>
<td>0.044</td>
</tr>
<tr>
<td>6-Mar</td>
<td>1400</td>
<td>7.2</td>
<td>53</td>
<td>0.038</td>
</tr>
<tr>
<td>7-Mar</td>
<td>1470</td>
<td>6.9</td>
<td>62</td>
<td>0.042</td>
</tr>
<tr>
<td>8-Mar</td>
<td>1330</td>
<td>7.7</td>
<td>48</td>
<td>0.036</td>
</tr>
<tr>
<td>9-Mar</td>
<td>1400</td>
<td>6.9</td>
<td>110</td>
<td>0.079</td>
</tr>
<tr>
<td>10-Mar</td>
<td>1400</td>
<td>7</td>
<td>114</td>
<td>0.081</td>
</tr>
<tr>
<td>11-Mar</td>
<td>1540</td>
<td>6.9</td>
<td>75</td>
<td>0.049</td>
</tr>
<tr>
<td>12-Mar</td>
<td>1680</td>
<td>7.2</td>
<td>60</td>
<td>0.036</td>
</tr>
<tr>
<td>13-Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-Mar</td>
<td>1470</td>
<td>7.2</td>
<td>53</td>
<td>0.036</td>
</tr>
<tr>
<td>15-Mar</td>
<td>1540</td>
<td>7.2</td>
<td>62</td>
<td>0.040</td>
</tr>
<tr>
<td>16-Mar</td>
<td>1740</td>
<td>7.1</td>
<td>57</td>
<td>0.033</td>
</tr>
<tr>
<td>17-Mar</td>
<td>1740</td>
<td>7.1</td>
<td>57</td>
<td>0.033</td>
</tr>
<tr>
<td>18-Mar</td>
<td>1820</td>
<td>7.3</td>
<td>53</td>
<td>0.029</td>
</tr>
<tr>
<td>19-Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-Mar</td>
<td>1750</td>
<td>7.2</td>
<td>57</td>
<td>0.033</td>
</tr>
<tr>
<td>21-Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Mar</td>
<td>1750</td>
<td>7.2</td>
<td>57</td>
<td>0.033</td>
</tr>
<tr>
<td>23-Mar</td>
<td>1820</td>
<td>7.1</td>
<td>66</td>
<td>0.036</td>
</tr>
<tr>
<td>24-Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-Mar</td>
<td>2100</td>
<td>7.6</td>
<td>87</td>
<td>0.041</td>
</tr>
</tbody>
</table>
Operator Training

- Pumping, Valving, and Piping
- ESD Operating System
- New SCADA
- Emergency
Pumping, Valving, and Piping

• Which Valve Does What
• Mixing Piping and Valves
• Heating Piping and Valves
• DST Piping
• ESD Piping
Sludge Pumping Room
ESD Pipe Gallery
ESD Pipe Gallery
Heat Exchanger
Heating Water Loop
Gas Storage
ESD Operating System

- Familiarizing Operators
- Function
- Control
- Programing
- Alarms
- Problems
ESD Screen

ESD Main Overview

[Diagram of an ESD system with various equipment and connections labeled.]
Pump Screen

Primary Tanks 5-8 Sludge Pumps

DST Flow
FT-330
82.8
CFM

Scum Hopper
Valve 389
CLOSED

Hopper Primary
Tanks 7 & 8
Valve 360
CLOSED

Hopper Primary
Tanks 5 & 6
Valve 361
OPENED
Schedule Screen
Foam Spray
Down Draft
Scum Removal Mode
Emergency

• Foam Control
• Power Outages
• Gas Pressures
• Heating

Check System Alarms!!!
Questions?