ASSET MANAGEMENT IN A SMALL COMMUNITY

Sally Duffy, PE
Hubbell, Roth & Clark, Inc.

June 20, 2016 | MWEA Annual Conference
AGENDA

1. Project Background
2. Objectives
3. Work Completed to Date
4. Costs to Date
5. Next Steps
6. Questions
CITY OF LINDEN

• Vibrant community that takes pride in its historic charm

• Village established in 1871, grew into city 1988

• Population of about 4,000 residents

• Active downtown with thriving shops, restaurants, and local businesses

• Shiawassee River and Linden Pond important natural resources
In **May 2014** City of Linden awarded MDEQ SAW Grant (Round 1)

- Asset Management Plan Grant ($876,800)
 - Storm Sewer System
 - Sanitary Sewer System
- Sanitary Design ($70,000)
 - East Ralston Road Pump Station Replacement
 - SCADA Upgrades
- Total Grant Amount - $946,800, including 10% City Match - $94,680
- Must complete within **3 years** (May 2017)
AMP GRANT OBJECTIVES

• Develop Asset Management Plan for Sanitary and Storm Sewer Collection Systems:
 • Asset Inventory and Condition Assessment
 • Level of Service
 • Criticality of Assets
 • Operation and Maintenance Strategies
 • Long Term Funding/Capital Improvement Planning
AMP GRANT OBJECTIVES

1. What is the current state of my assets?
 - Develop Asset Registry
 - Assess Condition, Failure Modes
 - Determine Residual Life
 - Determine Life Cycle & Replacement Costs
 - Set Target Levels of Service (LOS)
 - Determine Business Risk ("Criticality")
 - Optimize O&M Investment
 - Optimize Capital Investment
 - Determine Funding Strategy
 - Build AM Plan

2. What is my required level of service?

3. Which assets are critical to sustained performance?

4. What are my best O&M and CIP investment strategies?

5. What is my best long-term funding strategy?

From EPA Fundamentals of Asset Management
SPECTRUM OF ASSET MANAGEMENT TOOLS

Goal to provide useful tools while being simple to use with standard software.
• Asset Management Planning
 • GIS Database Development
 • Level of Service (ongoing)
 • Storm and Sanitary Sewer Televising for Condition Assessment
 • Manhole Inspections for Condition Assessment
 • Pump Station Inventory and Assessment
 • Risk Analysis (ongoing)
• GIS database for sanitary/storm sewer
 • Started with Genesee County sanitary data
 • County attributes were sufficient
 • As-built plans to complete the sanitary GIS and create storm GIS
• All structures field-located/verified using GPS
FIELD INVENTORY

• Manholes and Structures
 • Hand-held Zeno GPS unit
 • Rated accuracy is 2 cm with rover antenna
 • Accuracy depends on signal interference, satellite coverage, antenna location/configuration, etc.
 • Field crews found all structures to be within 1’
• Database updated to actual field location
• Sewer GIS compared to CCTV data
SEWER CONDITION ASSESSMENT

• Cleaned and televised all sanitary & storm sewers constructed prior to 1993 (about 77,000 lft)

• United Resources performed in July & August 2015
 • $165,000 total cost, average unit cost $2.14/lft
 • 85% was 12” diameter or less
 • About 5% sanitary and 15% storm required heavy cleaning

• United Resources provided database as deliverable
 • Unique IDs
 • NASSCO Quick Scores
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7/9/2015 3:32 AM</td>
<td>201.6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>201.6</td>
<td>2</td>
<td>1</td>
<td>201.6</td>
<td>2</td>
<td>1</td>
<td>201.6</td>
<td>2</td>
<td>10.8</td>
<td>2</td>
<td>10.8</td>
<td>2</td>
<td>10.8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7/9/2015 10:36 AM</td>
<td>13.6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>13.6</td>
<td>2</td>
<td>2</td>
<td>13.6</td>
<td>2</td>
<td>2</td>
<td>13.6</td>
<td>2</td>
<td>52.0</td>
<td>2</td>
<td>52.0</td>
<td>2</td>
<td>52.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>7/9/2015 10:44 AM</td>
<td>20.8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>20.8</td>
<td>3</td>
<td>3</td>
<td>20.8</td>
<td>3</td>
<td>3</td>
<td>20.8</td>
<td>3</td>
<td>52.0</td>
<td>3</td>
<td>52.0</td>
<td>3</td>
<td>52.0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7/9/2015 12:38:31 PM</td>
<td>296.9</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>296.9</td>
<td>4</td>
<td>4</td>
<td>296.9</td>
<td>4</td>
<td>4</td>
<td>296.9</td>
<td>4</td>
<td>120.0</td>
<td>4</td>
<td>120.0</td>
<td>4</td>
<td>120.0</td>
</tr>
</tbody>
</table>

Manhole [MH-61-190065]
End of Survey
Approximately 67,700 ft of Sanitary Sewer Inspected

Approximately 9,100 ft of Storm Sewer Inspected
• ArcCollector interface with custom digital form
• Apple iPad tablets
• Attributes were MACP Level I “plus”
• Given general qualitative structural score of 1, 3, 5 (Good, Fair, Poor)
• 1,400 structures assessed in approximately two months (about 22 structures per day)
Location: Lat 42.833121° Long -83.76429°

LindenSanMasterQC: 17D019

Street: 1421 RIPLEY RD

Found: Yes

Routing Status: Surface Inspection

Surface Type: Grass

Grass Type: Dirt

Location Code: Easement/Right of Way

Cover Shape: Circular

Surveyed By: LMH

Certificate Number: 17D019

Date Surveyed: March 4, 2015
<table>
<thead>
<tr>
<th>Asset ID</th>
<th>Notes</th>
<th>Observed Problem</th>
<th>Inspected by</th>
<th>Structure Condition</th>
<th>Inspection Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>19D107</td>
<td>Chimney issues</td>
<td>Yes</td>
<td>LMH</td>
<td>Good</td>
<td>Surface Inspection</td>
</tr>
<tr>
<td>21C046</td>
<td>Grass coming in from under frame. Poor installation</td>
<td>Yes</td>
<td>LMH</td>
<td>Found</td>
<td>Surface Inspection</td>
</tr>
</tbody>
</table>

Photo 1

Photo 2

Photo 3

Photo 4
• 512 Sanitary Manholes Inspected
 • 90% in Good Condition
 • 5% in Fair Condition
 • 5% in Poor Condition

• 888 Storm Structures Inspected
 • 90% in Good Condition
 • 7% in Fair Condition
 • 3% in Poor Condition
PUMP STATIONS

• Rolston Road and SCADA system already scheduled to be replaced

• Byrom, Blythe and Ripley assessed with memo of findings and recommendations

• Provide general asset inventory and replacement schedule with prioritization for budgeting
City of Linden Pump Station Non-Spatial Table

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Unique ID</th>
<th>Description</th>
<th>Type</th>
<th>Install Year</th>
<th>Refurb Year</th>
<th>Material</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Serial No.</th>
<th>Status</th>
<th>Size1</th>
<th>Size2</th>
<th>Horsepower</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Stations</td>
<td>Blythe Road</td>
<td></td>
<td></td>
<td></td>
<td>Pump</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pump #1</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pump #2</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Motor #1</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Motor #2</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Base Elbow #1</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Base Elbow #2</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Discharge Pipe #1</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Discharge Pipe #2</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guide Rail #1</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Guide Rail #2</td>
<td>1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Well Well Structure</td>
<td>1990</td>
<td></td>
</tr>
</tbody>
</table>
• Attributes of a utility that describe its performance
 • How much, of what nature, how frequently
 • Driven by customer/users and governing body
 • Communicate and track service levels (manage expectations and measure results)
 • Increased service equals increased cost:
 • Trade-offs: risk versus rate impacts
 • Consumption rate versus investment rate
 • Balance acceptable level of risk with acceptable cost
LEVEL OF SERVICE

• City of Linden wants to maintain current service level
 • Understand where they are first
 • Then define goals and acceptable level of risk

From EPA Fundamentals of Asset Management
• Condition of asset used to estimate Probability of Failure (POF):
 • May include other factors such as age, soil type, material of construction

• Criticality determined with LOS goals to estimate Consequence of Failure (COF):
 • May include location (surface water, railroad), surface type (road/grass), customers/flow

• Business Risk Evaluation (BRE) = POF x COF
 • Adjust for redundancy
COSTS TO DATE

• Pump Station Design
 • SAW Application $70k
 • Spent $68k – Complete

• Wastewater Asset Management Plan
 • SAW Application $529k
 • Spent $250k – Finalizing Risk and Costs

• Stormwater Asset Management Plan
 • SAW Application $347.8k
 • Spent $157k – Finalizing Risk and Costs
NEXT STEPS

Finalize Risk and LOS
- Sensitivity Analysis
- “Gut check”
- Level of Service goals and measures

Recommendations
- O&M costs and priorities
- Capital Improvement Projects

Rate Sufficiency
- Balance Needs and Cost
- Iterative Process
- Develop budget tools

GRANT COMPLETION MAY 2017
AMP BENEFITS TO LINDEN

• Have GIS database, including:
 • Hyperlinks to record drawings that can be viewed in office or on mobile device
 • Risk model

• Have baseline assessment of sewers and structures

• Risk analysis highlights the assets that require more frequent monitoring and/or maintenance

• Have maintenance, rehabilitation and replacement costs for all assets
AMP BENEFITS TO LINDEN

• Know where they stand now
• Plan for the future
• Data available when other needs arise
 • Road, water main, etc. projects can look at condition and risk of sewers and structures
 • Rehabilitate, replace, or leave
• Budgetary tool
QUESTIONS