Water Resource Recovery Facility
Hydraulic Modeling

Paul Bahs, PE
June 23, 2015

Imagine the result
Why are hydraulic evaluations performed
Types of hydraulic analyses (level of detail)
Validating modeling results
Examples
Why are Hydraulic Evaluations Performed

• Asked to treat more wet weather flow
• Not performing as anticipated (process or train)
• Operational considerations during wet weather conditions
• Evaluate improvement alternatives

“Generally completed with a biological analysis”
Types of Hydraulic Analyses

- Steady state conditions (average, maximum, peak hour)
- Simple hydraulic losses to develop profiles and identify potential bottlenecks
- Sometimes conservative
Types of Hydraulic Analyses

- Challenging to review
- Open Channel vs. Full pipe flow
- Submerged vs. unsubmerged weir

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} + g(S - S_f) = 0 \]
Types of Hydraulic Analyses

- Both Steady and Wet Weather Conditions
- Linked to the Collection System Model
- Simplified Pumps
- Simplified RAS
- Single event storage analysis
Types of Hydraulic Analyses

- Both Steady and Wet Weather Conditions
- Linked to the Collection System Model
- Throttling valves
- V-notch weirs
- Weir controls
- Detailed RAS
Computer Model Development

- Length
- Geometry
- Invert Elevations
- Rim Elevations
- Roughness Coefficient
- Minor loss coefficients
Computer Model Layout

- Visual considerations
- Primary Launder (detailed vs. simplified)
- Secondary Effluent Channel (not a side overflow weir)
Validating Results

- Peak Flows
- Stress Test
- Flow vs. Water Elevations
Validating Results

• Data review
• When the flow measurement is not at the same location as the water surface measurement
• Steady state conditions
Providing Results

- Develop statistical templates
 - Select nodes
 - Maximum water surface
 - Select links
 - Peak flow
 - Identify specific date/time
- Exported to GIS
Real Time Controls

- Open/Close sluice gates
- Pumps On/Off
- Throttling valves
- Weir gates

“Simulate 6 design flow rates with 3 different boundary conditions”
Real Time Controls

- Recommend starting with steady state conditions
- Recommend using incremental controllers
- Add detail to simulate a hydrograph response
- Proportional Integral Differential (PID) controller

“Innovyze recommends using PID controllers as a last resort”
Examples

• Uneven secondary flow split
• Flows under gallery through 48”
• 48”x48” sluice gate separating trains is normally closed
• What happens when the gate is normally open
Examples

- RAS flowrate controlled with throttling valves
- Combined lower and upper well
- Different recycle rates for the trains
Examples

- WAS controlled by meters and throttling valves
- 10% solids
- Sediment application
Examples

- Operational Flow Diversions
- Morning Glories (weir and gate control)
- Gates have to be told how to move up and down
Hydraulic Losses

- Chlorine Contact Tank
- Aeration Tanks
 - Sluice gates between passes
 - Fluid momentum losses
- Secondary Column (manufacturers headloss curve)
- Suction Header
Summary

• The hydraulic approach depends on:
 • Level of detail required
 • Complexity (real time controls)
 • Number of simulations
 • Proposed improvement evaluations
• Always validate computer modeling results
• Focus on wet weather operations