Winner of the "Not My Job" Award - ADOT
Litchfield Park, AZ 85
Infiltration/Inflow & Sanitary Sewer Flow Metering
Why We Meter, What We Do with the Meter Data and How Meters Work
Jennifer Morreale, P.E., CFM

Thursday September 29, 2016
Flow Metering – Why We Meter

• Quantify Infiltration and Inflow (I/I)
Flow Metering – Why We Meter

• Combined vs Separate
SEPARATE SEWER SYSTEM
Combined Sewer System

- Medium Storm
- Big Storm
- Small Storm

Dry Weather Sanitary Flow

STORM MANHOLE → CATCH BASIN

FOOTING DRAIN → SANITARY LEAD → BASEMENT

TOILET
Small Storm
Typical Problem: Tree Roots
Combined Sewer System
Small Storm
Typical Problem: Pipe Collapse
Combined Sewer System
A Solution: Check Valve
A Solution: Relief Sewers
A Solution: Sewer Separation

COMBINED SEWER SYSTEM
A Solution: Sewer Separation

Old Combined = Sanitary Manhole
New Storm Manhole

Old Combined = Sanitary
New = Storm
A Solution: Sewer Separation

Old Combined = Sanitary Manhole

New = Storm manhole

Splash Block

CATCH BASIN

FOOTING DRAIN

SANITARY LEAD

TOILET

BASEMENT

Old Combined = Sanitary

New = Storm
A Solution: Sewer Separation

Old Combined = Sanitary
New = Storm

Old Combined = Sanitary
New = Storm
A Solution: Sewer Separation

Old Combined = Sanitary Manhole
New = Storm Manhole

Old Combined = Sanitary
New = Storm
Flow Metering – Why We Meter

- Combined vs Separate
- Rain causes system to back up
- Options: basement flooding and/or overflow
 - Old systems = “not water tight”
- Tree roots, cracks in pipes, cracks in manholes
- Legal direct connections
- Illegal direct connections
Sources of Infiltration and Inflow (I/I)

Infiltration Sources

1. Broken House Lateral
2. Root Intrusion into Lateral
3. Faulty Lateral Connection
4. Cracked or Broken Pipe
5. Deteriorated Manhole

Inflow Sources

1. Roof Drain Connection
2. Sump Pump/Foot Drain Connection
3. Uncapped Clean-Out
4. Storm Cross-Connection
5. Faulty Manhole Cover or Frame
Flow Metering – Why We Meter

- Quantify Infiltration and Inflow (I/I)

How much rain water is getting into the system
Engineering Flowchart

DOES IT MOVE?

No

No

Should it?

No

No

Problem

Yes

WD-40

Yes

No

No Problem

Yes

No

No

Problem

Yes

No

No

Problem

No

No

Problem

No

No

Problem
Flow Metering – What We Do with the Data

• Project the amount of I/I for a certain size storm

 • Step 1 = DWF

 Usually the 10 Year Storm
Flow Metering – What We Do with the Data

- Project the amount of I/I for a certain size storm
 - Step 1 = DWF
 - Step 2 = WWF
Flow Metering – What We Do with the Data

• Project the amount of I/I for a certain size storm
 • Step 1 = DWF
 • Step 2 = WWF
Peak Intensity vs. Peak Inflow

Inflow (mgd) vs. Intensity (in/hr)

10 Year Event: 2.06

Button:
One rain
More rain
Peak Intensity vs. Peak Inflow

Inflow Intensity (in/hr)

Peak Intensity vs. Peak Inflow

Inflow

Intensity (in/hr)

2.06
Flow Metering – What We Do with the Data

• Project the amount of I/I for a certain size storm
• Compare flows to accepted rates:
 – Infiltration is excessive if DWF > 120 gpcd
 – Inflow is excessive if WWF > 275 gpcd
Flow Metering – How Meters Work

• Area Velocity Meters
 • Depth Measurement
 • Ultrasonic Sensor
 • Pressure Sensor
 • Velocity Measurement
 • Doppler

Courtesy of American Sigma
Velocity/Level Probe
Although they restricted themselves to one drink at lunch time, Howard and Tom still found they were not at their most productive in the afternoons.
Infiltration/Inflow & Sanitary Sewer Flow Metering

Why We Meter

What We Do with the Data

How Meters Work

Infiltration/Inflow & Sanitary Sewer Flow Metering

End
Infiltration/Inflow & Sanitary Sewer Flow Metering
Why We Meter, What We Do with the Meter Data and How Meters Work

By: Jennifer Morreale, P.E. CFM
jmorreale@hrc-engr.com
313-463-4248

Thursday September 29, 2016