STORMWATER ASSET MANAGEMENT:
DEFINING THE ASSETS CONDITION

John Martin, City of Sylvan Lake
Nicole Selais, Hubbell, Roth & Clark, Inc.
Janice Lerg, Hubbell, Roth & Clark, Inc.
CITY OF SYLVAN LAKE

• The Prettiest Little City in the State of Michigan!
• Nestled in Oakland County
• Population of about 2,000 residents
• Community with beautiful lakefront privileges
HISTORY

• Area discovered almost 200 years ago (1818) and was a tourist area

• Incorporated into a Village in 1921 and then into a Home Rule City in 1947

• City has an abundance of parks and lakefront property
PROJECT LOCATION
PROJECT BACKGROUND

• In May 2014 City of Sylvan Lake was awarded an MDEQ SAW Grant (Round 1)
• Asset Management Plan Grant ($959,386)
 • Storm Sewer System
 • Sanitary Sewer System
• Total Grant Amount - $1,065,984 including 10% City Match - $106,598
• Must complete within 3 years (May 2017)
• Storm Sewer System consists of:
 • Storm Structures – catch basins, manholes, yard drains, culverts
 • Storm Sewers and drainage ditches
 • Storm Pump Station

⇒ All discharge to Sylvan Lake
INVENTORY

• GIS database for storm sewer:
 • Original GIS database was incomplete
 • The entire City was mobile mapped (laser scanned) to develop the base for the structures
 • As-built plans utilized to complete the GIS
 • Manhole Inspections updated structure information
 • Televising information updated piping information
Metro Environmental Services performed televising in April – July 2016

- Televised 18,751 lft of storm sewers
- $18,034 total cost, average unit cost $0.96/lft
- 50% was 12” diameter or less
- Provided database as deliverable w/:
 - Unique IDs
 - NASSCO Quick Scores
 - Videos
 - Reports
SEWER CONDITION

Televising

Conclusions:

- 85% of sewers in good condition
- Minimal sewers found to have defects
Roots at Joints

Roots cut to traverse pipe

Counter: 77.6
Code: RTJ (Roots Tap Joint)
Percent: 005
Severity:
From: 07
To:
Remarks:
Diam:
Continuous Defect:

16:55 07.11.16
LC1: +0077.60 ft
Longitudinal Cracks & Deformed Pipe

- Longitudinal crack
- Pipe deforming & may eventually collapse
Pipe Collapse

- Pipe buckling
Hole in pipe
Joint Separated
• Apple iPad tablets utilized for collecting data

• ArcCollector interface with custom digital form

• Attributes were MACP Level I “plus” –
 • “Plus” - added a couple fields to indicate condition and any notes
STRUCTURE CONDITION

• Condition –
 • Given general qualitative structural score of 1, 3, 5 (Good, Fair, Poor)
 • “Gut Check” from Field Staff

• 654 Storm Structures Inspected
 • 78% in Good Condition
 • 19% in Fair Condition
 • 3% in Poor Condition
Storm Outfall Deteriorating

- Ground eroding around outfall
- Outfall exposed to grade
- Outfall rusting/deteriorating
Structure Collapsing

- Frame/Cover disconnected from structure
- Block frame loose
- Masonry brick interior walls – falling and crumbling into structure
Loose Block & Brick, Hole in Structure Wall
Cracks/Holes in Structure
Manhole Inspection Forms (created in GIS):
• Inspection data provided for the City
 • Can be utilized for work orders, etc.
• Includes:
 • All inspection data
 • Condition field (good, fair, poor)
 • Location map
• **Condition** of asset used to estimate **Probability of Failure (POF):**
 - May include factors such as age, soil type, material of construction, CCTV scores

• **Criticality** determined to estimate **Consequence of Failure (COF):**
 - May include location (surface water, railroad), surface type (road/grass), customers/flow, critical areas

• **Business Risk Evaluation (BRE) = POF x COF**
Using GIS to develop POF/COF/BRE:

- Cost Factors
- Rehab Factors
- Material
- Pipe Age
- Soil Type
- Rehab Costs
Using GIS Model Builder to develop COF:

- Diameter
- Depth
- Surface Type
- Critical Areas
- Proximity to Water body
Using GIS Model Builder to develop POF:

<table>
<thead>
<tr>
<th>PipeID</th>
<th>MUSYM</th>
<th>SOILSC</th>
<th>Mat</th>
<th>PMATSCORE</th>
<th>Age</th>
<th>PAGESC</th>
<th>Struct</th>
<th>OM</th>
<th>Overall</th>
<th>POF</th>
<th>COF</th>
<th>BRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1020</td>
<td>62B</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>4100</td>
<td>4212</td>
<td>4312</td>
<td>3.64</td>
<td>2.3</td>
<td>8.372</td>
<td></td>
</tr>
<tr>
<td>P1028</td>
<td>63A</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>2100</td>
<td>900</td>
<td>2100</td>
<td>1.98</td>
<td>1.4</td>
<td>2.772</td>
<td></td>
</tr>
<tr>
<td>P1030</td>
<td>63A</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>1100</td>
<td>900</td>
<td>1100</td>
<td>1.48</td>
<td>1.5</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>P1091</td>
<td>62B</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>900</td>
<td>1100</td>
<td>1100</td>
<td>1.42</td>
<td>2.3</td>
<td>3.266</td>
<td></td>
</tr>
<tr>
<td>P1092</td>
<td>62B</td>
<td>2</td>
<td>CMP</td>
<td>3</td>
<td>66</td>
<td>3800</td>
<td>900</td>
<td>3800</td>
<td>2.93</td>
<td>2.5</td>
<td>7.325</td>
<td></td>
</tr>
<tr>
<td>P1093</td>
<td>41B</td>
<td>1</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>4300</td>
<td>4112</td>
<td>4412</td>
<td>3.67</td>
<td>2.5</td>
<td>9.175</td>
<td></td>
</tr>
<tr>
<td>P1094</td>
<td>41B</td>
<td>1</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>1200</td>
<td>900</td>
<td>1200</td>
<td>1.48</td>
<td>2.3</td>
<td>3.404</td>
<td></td>
</tr>
<tr>
<td>P1109</td>
<td>62B</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>3327</td>
<td>900</td>
<td>3327</td>
<td>2.59</td>
<td>2.7</td>
<td>6.993</td>
<td></td>
</tr>
<tr>
<td>P1110</td>
<td>62B</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>2211</td>
<td>900</td>
<td>2211</td>
<td>2.04</td>
<td>3.5</td>
<td>7.14</td>
<td></td>
</tr>
<tr>
<td>P1115</td>
<td>62B</td>
<td>2</td>
<td>CMP</td>
<td>3</td>
<td>66</td>
<td>2100</td>
<td>900</td>
<td>2100</td>
<td>2.03</td>
<td>2.3</td>
<td>4.784</td>
<td></td>
</tr>
<tr>
<td>P1119</td>
<td>62B</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>5221</td>
<td>900</td>
<td>5221</td>
<td>3.64</td>
<td>2.3</td>
<td>8.142</td>
<td></td>
</tr>
<tr>
<td>P1121</td>
<td>62B</td>
<td>2</td>
<td>RCP</td>
<td>1</td>
<td>66</td>
<td>3121</td>
<td>900</td>
<td>3121</td>
<td>2.73</td>
<td>2.3</td>
<td>6.826</td>
<td></td>
</tr>
</tbody>
</table>
Using GIS to develop BRE:

\[\text{BRE} = \text{POF} \times \text{COF} \]

- Map identifies areas with BRE score results
- Also indicating any “critical” areas

\[\Rightarrow \] Starting point to further refine and develop CIP and/or O&M costs
CCTV DATA INTERFACE WITH GIS

- CCTV Contractor used GIS extension
- Used ESRI CCTV Government Solution Package to integrate data
- Allows for viewing of CCTV data entries in GIS
CCTV data to GIS
• Giving locational value to the defects found in the CCTV data

Separated Joint
NEXT STEPS

• Finalize BRE/Sensitivity Analysis
• Determine O&M Costs & Capital Improvements
• Balance the City’s Needs and Cost ⇒ Rate Analysis