INTRO TO PANEL PRESENTATIONS ON

WWRF OPTIMIZATION

CASE STUDIES OF WHAT WORKS AND WHAT DOESN’T

Overview of Panel Discussions

- Goal of presentations
- Mix of small and large systems
- Presented by municipal staff
- Focused on activated sludge

<table>
<thead>
<tr>
<th>Location</th>
<th>Capacity, mgd</th>
<th>Optimizations/Investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexter</td>
<td>0.5</td>
<td>Blower and diffuser replacement</td>
</tr>
<tr>
<td>Grand Haven</td>
<td>6.5</td>
<td>Bio-P; ORP monitoring; Auto-DO control</td>
</tr>
<tr>
<td>Wyoming</td>
<td>24</td>
<td>Bio-P; ORP monitoring; Auto-DO control</td>
</tr>
<tr>
<td>Grand Rapids</td>
<td>61</td>
<td>Bio-P; Auto-ammonia control; Auto-UV Control</td>
</tr>
</tbody>
</table>
What is the Goal of Optimization?

- Minimize $$$
 - Life cycle costs and operating costs
- Improve process reliability
 - Minimize permit violations
- Reduce stress for superintendents & operators
Overview Topics

- Aeration System Energy Optimization
- Enhanced Biological Phosphorus Removal
- Probes for Automation
Typical Energy Usage in WRRFs

- **Aeration**: 40-60%
- **Influent Pumping**: 15-20%
- **Sludge Processing**: 15-20%
- **Miscellaneous**: 7-10%
- **Primary Treatment**: 3-5%
Aeration System Energy Optimization

- Starts with blower efficiency
- Fine bubble and clean diffusers
- Automatic DO and/or ammonia control
Newer, Energy Efficient Blowers Reduce Power Usage

- Rotary Screw (PD)
- Centrifugal – Single Stage
- High Speed Turbo
Typical Secondary Treatment in Michigan WRRFs

Activated Sludge Processes with:

- Nitrification
- Enhanced Bio-P Removal (EBPR)
- Chemical P Removal
Enhanced Biological Phosphorus Removal

![Diagram of Enhanced Biological Phosphorus Removal process]

- **Primary Effluent**
 - **Anaerobic (with Nitrification)**
 - Air
 - **Aerobic**
 - **Clarifier**
 - **Ferric chloride for P precipitation**
 - **Secondary Effluent**
 - BOD < 25 mg/L
 - TSS < 25 mg/L
 - NH₄ < 0.5 mg/L
 - TP < 1 mg/L

![Graph of Ortho-P Concentration](Ortho-P Conc. vs Time)
Enhanced Biological P Removal (EBPR) Mechanism

- **Anaerobic Zone**
 - Rapidly Biodegradable Substrate (VFAs)
 - PHB
 - Polyphosphate
 - Energy
 - P Release
 - Cell Synthesis

- **Aerobic Zone**
 - Polyphosphate
 - Energy
 - CO₂ + H₂O
 - Cell Synthesis
 - Excess P Uptake

- **DO, NO₃⁻**
EBPR Mechanism

Anaerobic

Feed condition or Battery charging

Aerobic

Starved condition or Battery discharging

Waste Sludge Loaded with P
VFAs Play a Central Role in EBPR

- VFA = Food for PAOs
 - VFA:P removed = 4:1 to 16:1

- Rapidly biodegradable COD is another estimate of VFA formation potential
 - rbCOD:P removed = 15:1 (minimum)

- Potential sources VFAs
 - Fermentation in sewer system
 - Fermentation in anaerobic zone of the bioreactor
 - Primary sludge fermentation
Requirements for Reliable EBPR

1. Consistent and adequate supply of VFAs
 - Variable supply of VFAs appear to stress the PAOs
 - Wet weather flows & high infiltration cause low VFAs
 - Recycle loads can impact VFA:TP ratio

2. Preserve integrity of the anaerobic zone
 - Critical for P release – No P release, no PAO selection

3. Maximize solids capture
 - Solids = Particulate P
 - Optimize clarifier & filter operation
 - Maximize thickening & dewatering solids capture
Aeration and the (bio-chemical) environment

- Anaerobic
- Anoxic
- Oxic

- Nitrification
- BOD removal
- ‘P’ uptake
- Denitrification
- ‘P’ release
- Fermentation

ORP, mV
Probes for Process Control

Types of Probes:

▪ Dissolved Oxygen
▪ Oxidation Reduction Potential
▪ Ammonia

Key O&M Issues:

▪ Instrument reliability
▪ Maintenance requirements (calibration, cleaning)
▪ Frequency of replacement
▪ Cost (per analyzer, SCADA)
▪ What happens to process if instrument fails?
Overview of Panel Discussions

<table>
<thead>
<tr>
<th>Capacity, mgd</th>
<th>Optimizations/Investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dexter</td>
<td>0.5</td>
</tr>
<tr>
<td>Grand Haven</td>
<td>6</td>
</tr>
<tr>
<td>Wyoming</td>
<td>24</td>
</tr>
<tr>
<td>Grand Rapids</td>
<td>61</td>
</tr>
</tbody>
</table>