2D Stormwater Modeling Applications

Samir Matta, PE
Burton Johnson, PE, CFM
Company Background - About LAN

- Founded in 1935
- Full-service engineering, planning, and program management
- 21 offices nationwide
Agenda

2-Dimensional (2D) Stormwater Modeling

1. What is it
2. What’s Involved
3. General Applications
4. Example Projects
5. Michigan – local demonstration
Agenda

2-Dimensional (2D) Stormwater Modeling

1. What is it

2. What’s Involved

3. General Applications

4. Example Projects

5. Michigan – local demonstration
2D Stormwater Modeling

- Traditional “1-dimensional” modeling
 - Pipes, channels
 - 1 “direction” only
 - Limited surface flow

- 2-dimensional modeling
 - Pipes, channels
 - Multiple “directions”
 - Accurate surface flow
2D Stormwater Modeling

• 2D Stormwater Modeling:
 – A more accurate means to simulate stormwater runoff
2D Stormwater Modeling

• 2D Stormwater Modeling:
 – A more accurate means to simulate stormwater runoff

• New Approach
 – Available high resolution topography
 – Technological advances
2D Stormwater Modeling

• 2D Stormwater Modeling:
 – A more accurate means to simulate stormwater runoff

• New Approach
 – Available high resolution topography
 – Technological advances
2D Stormwater Modeling

- 2D Stormwater Modeling:
 - A more accurate means to simulate stormwater runoff

- New Approach
 - Available high resolution topography
 - Technological advances

- Understanding the “Flood”
 - Traditional methods emphasize model the pipes
 - 2D Methods model the surface, or the “flood”
2D Stormwater Modeling
2D Stormwater Modeling

- Analysis Accuracy
2D Stormwater Modeling

- Analysis Accuracy
 - Improved understanding
2D Stormwater Modeling

• Analysis Accuracy
 - Improved understanding
 - Effective and efficient solutions
2D Stormwater Modeling

- Analysis Accuracy
 - Improved understanding
 - Effective and efficient solutions
 - Effective allocation of available funding
2D Stormwater Modeling

• Analysis Accuracy
 - Improved understanding
 - Effective and efficient solutions
 - Effective allocation of available funding

• Communication Tool
 - Visual Simulation during Public Meetings
2D Stormwater Modeling

- Analysis Accuracy
 - Improved understanding
 - Effective and efficient solutions
 - Effective allocation of available funding
- Communication Tool
 - Visual Simulation during Public Meetings
- Benefit Determination
 - Funding assistance
2D Stormwater Modeling

• Analysis Accuracy
 - Improved understanding
 - Effective and efficient solutions
 - Effective allocation of available funding

• Communication Tool
 - Visual Simulation during Public Meetings

• Benefit Determination
 - Funding assistance

• Efficient and cost-effective
Agenda

2-Dimensional (2D) Stormwater Modeling

1. What is it

2. What’s Involved

3. General Applications

4. Example Projects

5. Michigan – local demonstration
2D Modeling – What’s Involved

Typical Analysis Inputs

• Aerial Topography – LiDAR – Essential

• Drainage Infrastructure
 – Pipes
 – Open Drains
 – Rivers

• Land Use
2D Modeling – What’s Involved

Hydrology - Traditional
– Rational Method
 • Delineate Drainage Area
 • Calculate Time of Concentration
 • Determine Intensity
 • Calculate Peak Flowrate
– Unit Hydrograph Methods
 • Rainfall Amount and Distribution
 • Loss Rates
 • Unit Hydrograph Methods
 • Develop Hydrographs
2D Modeling – What’s Involved

Hydrology – 2D Analysis

– Unit Hydrograph Methods

– Alternative 2D Approach
 • True simulation of rainfall/runoff
 • Rainfall applied directly to surface
 • Loss Rates applied prior to modeling
2D Modeling – What’s Involved

• Hydraulics
 – Sub-Surface (pipes)
 • Inlets
 • Size & Shape
 • Elevations

 – Surface
 • LiDAR
 • Roughness Zones
 • Topographic Adjustments

• Boundary Conditions
 • Hydrographs/Rainfall
 • Tailwater
Model Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Software</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| **Static or Steady State Analysis** | • StormCAD
• HEC-RAS
• Spreadsheets | • Ease of use
• Standard product
• Results reporting is simple and easy to interpret and evaluate
• Limited data requirements | • Complex systems
• No overland flow
• Results reporting |
| **Dynamic with 1-D Overland Sheetflow** | • SWMM
• XP-SWMM
• ICPR
• InfoWorks
• HEC-RAS | • Complex storm sewers
• Pump stations and detention
• Limited data requirements
• 1-D overland flow | • Complex analysis – specialty
• Limited overland flow
• Limited results reporting |
| **Dynamic with 2-D Overland Sheetflow** | • InfoWorks
• XP-SWMM
• SOBEK
• MIKE Urban
• HEC-RAS 5 | • Improved overland sheetflow
• Improved storage accounting
• Additional calibration options
• Improved communications tools | • Complex analysis – specialty
• Data requirements
• Initial up-front cost |
Agenda

2-Dimensional (2D) Stormwater Modeling

1. What is it
2. What’s Involved
3. General Applications
4. Example Projects
5. Michigan – local demonstration
2D Modeling Applications

• Problem Area specific studies

• Planning and Drainage Studies
 – Master Drainage Plans
 – System inventory and assessment
 – Problem identification and prioritization

• Support Design Level Project
2D Modeling Applications

• High-Level Rapid 2D Assessment
 – Initial problem evaluation
 – Planning tool
 – 90/10 rule: value/effort
 – Master plan applications
2D Modeling Applications

• High-Level Rapid 2D Assessment
 – How does it work
 • Leverage Available Data
 – LiDAR Data
 – GIS Information
 • Rainfall on Mesh
 • Regional Results Comparable With Detailed Studies
 – 90/10 Rule in Effect
Rapid 2D – San Antonio - Woodlawn

• High-Level Rapid 2D Analysis
 – Initial problem evaluation
 – Planning tool
 – 90/10 rule: value/effort
 – Master plan applications
2D Modeling Applications

- Complex Problem Evaluation
 - Combine traditional methods with cutting edge technology
 - Calibrated simulation
 - Confidence in solution
Complex Problem Evaluation

- Open channel, surface, and SS flow
Problem Area Prioritization

Problem Area Prioritization Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Flooded Structures</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>Impassable Intersections</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>Design Event Compliance</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>Extreme Event Compliance</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>Excessive Inundation Duration</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>Cross Block Flooding</td>
<td>1</td>
</tr>
</tbody>
</table>
Complex Problem Evaluation

Communication
• Confirmation of evaluation accuracy
• Effectiveness of solutions
2D Modeling Summary

• Relatively new approach
2D Modeling Summary

- Relatively new approach
- More accurate and comprehensive
2D Modeling Summary

- Relatively new approach
- More accurate and comprehensive
- Full understanding of complex flow
2D Modeling Summary

• Relatively new approach
• More accurate and comprehensive
• Full understanding of complex flow
• Planning tool
2D Modeling Summary

- Relatively new approach
- More accurate and comprehensive
- Full understanding of runoff
- Planning tool
- Design tool
2D Modeling Summary

- Relatively new approach
- More accurate and comprehensive
- Full understanding of complex flow
- Planning tool
- Design tool
- Communication tool
Agenda

2-Dimensional (2D) Stormwater Modeling

1. What is it
2. What’s Involved
3. General Applications and Examples
4. Example Projects
5. Michigan – local demonstration
2D Analysis and Lansing Region

- Flat topography – Overland flow important
- Intense short duration rainfall
- Mature developments

- Applications
 - Planning
 - Problem area evaluation
 - Design support
 - FEMA Map Evaluation
Webberville, MI
10-Year Flood Event
10-Year Flood Event
10-Year Existing vs Proposed Conditions - 11:45 am
10-Year Existing vs Proposed Conditions - Max Inundation
10-Year Existing vs Proposed Conditions
1:45 pm
Thank You

Samir Matta, PE
517-819-2367 (Mobile)
517-657-6176 (Office)
sfmatta@lan-inc.com

Burton Johnson, PE, CFM
281-773-7184 (Mobile)
713-266-2089 (Office)
bljohnson@lan-inc.com