MWEA Biosolids Conference

Biosolids Facility Planning: One Approach, Three Communities

March 13, 2019

Outline

- Background
- Facility Overviews
- Driving Factors
- Approach
- Key Alternatives Comparison
- Outcomes
- Lessons Learned

Biosolids Facility Planning

Goal: provide a planning document that guides upgrades to a water reclamation facility's solids treatment train over time.

- Understand future solids production
- Evaluate potential biosolids treatment technologies
- Plan implementation strategy
- Prepare biosolids facility plan report

Three Communities

East Lansing

- Biosolids Master Plan completed in 2017
- Average day flow: 12.3 MGD
- Design capacity: 18.75 MGD
- Conventional Activated Sludge

Solids Handling System

Holland

- Biosolids Alternative Evaluation completed in 2018
- Average day flow: 9 MGD
- Design capacity: 12 MGD
- High-Purity Oxygen Activated Sludge System

Solids Handling System

Grand Haven

- Biosolids Alternative Evaluation completed in 2018
- Average day flow: 3.7 MGD
- Design capacity: 6.67 MGD
- Conventional Activated Sludge

Solids Handling System

Driving Factors

East Lansing	Holland	Grand Haven
 Aging equipment Increase process redundancy Potential to reduce biosolids disposal costs Improve WRF sustainability 	 Increasing solids load Reaching capacity of existing storage Rising landfilling fees Restrictions on solids sent to landfill 	 Reaching capacity of existing storage due to limited biosolids load out Desire for increased disposal flexibility Interest to move away from lime stabilization

Biosolids Facility Plan Approach

- Assess existing system
- "Universe of Possibilities"
- Short List of Potential Solutions
- Economic and non-economic evaluation of potential solutions
- Selection of final solutions
- Implementation planning

Assess Existing System

- What is the expected solids loading over the planning period?
 - Existing flow or loading projections
 - Projected population growth
- What is the capacity of existing equipment?
 - Is the existing equipment capacity sufficient for the projected solids loading?
- What are existing process deficiencies?
 - Equipment age
 - Consistent operating challenges
 - Frequent repairs

"Universe of Possibilities"

- Thickening Equipment
 - Dissolved Air Flotation
 - Gravity Belt
 - Rotary Drum
 - Centrifuge
- Dewatering Equipment
 - Belt Filter Press
 - Screw Press
 - Rotary Fan Press
 - Centrifuge
- Digestion
 - Aerobic
 - Anaerobic
 - TPAD
 - Two-Phase Acid

- Thermal Chemical Hydrolysis
 - Lystek
 - Cambi
 - Pondus
- Lime Stabilization
- Composting
- Drying
 - Rotary Drum
 - Belt
 - Paddle
 - Fluidized Bed

Short List of Potential Solutions

- Thickening Equipment
 - Dissolved Air Flotation
 - Gravity Belt
 - Rotary Drum
 - Centrifuge
- Dewatering Equipment
 - Belt Filter Press
 - Screw Press
 - Rotary Fan Press
 - Centrifuge
- Digestion
 - Acrobic
 - Anaerobic
 - TPAD
 - Two-Phase Acid

- Thermal Chemical Hydrolysis
 - Lystek
 - Cambi
 - Pondus
- Lime Stabilization
- Composting
- Drying
 - Rotary Drum
 - Belt
 - Paddle
 - Fluidized Bed

Alternatives Comparison

- Thickening
- Dewatering
- Anaerobic Digestion
- Thermal Chemical Hydrolysis Processes
- Drying

Thickening Technology Comparison

	Dissolved Air	Gravity Belt	Rotary Drum	Centrifuge
Advantages	Continuous, unattended operationLow polymer usage	 Tried and true technology Non-enclosed process – can easily observe thickening 	 Totally enclosed – dry environment Fully automated 	 Enclosed design Low polymer usage Fully automated
Disadvantages	 Large footprint Requires compressed air 	 Wet environment High polymer requirements 	High polymer usage	 May depend on sludge characteristics High energy requirement Higher capital cost

Dewatering Technology Comparison

	Belt Press	Screw Press	Rotary Fan Press	Centrifuge
Advantages	 Tried and true technology Low energy use Lower capital and O&M cost 	Enclosed designLow energy useFully automated	Enclosed designLow energy use	 Enclosed design Low polymer usage Fully automated
Disadvantages	 Non-enclosed design Sensitive to incoming sludge characteristics 	Large polymer demandRequires wash water	 High capital and operating costs Not easily scalable for larger facilities 	 May depend on sludge characteristics High energy requirement Higher capital cost

Anaerobic Digestion

<u>Advantages</u>

- Energy generation
- Reduces mass of biosolids for storage and land application
- ✓ No chemical usage

<u>Disadvantages</u>

- Large footprint
- Large capital cost
- Increased operational complexity
- Class B application requirements/constraints
- Odor concerns

Thermal Chemical Hydrolysis

- Anaerobic digestion pretreatment techniques that convert organic solids into soluble compounds by applying heat and pressure
- Increases digestibility, reduces digester sizing, increases biogas production, changes biosolids viscosity, and provides biosolids stabilization
- Commercialized processes provide equipment packages for thermal hydrolysis
 - Pondus, Cambi, Lystek

TCHP Technology Comparison

	Pondus	Cambi	Lystek
Advantages	 Minimizes reactor volume by treating only WAS Utilizes a hot water supply as the heating source 	 No chemical addition required Pre-heating from Cambi may be sufficient to fully heat digester 	 Potential for stand- alone treatment process High solids content Class A liquid product
Disadvantages	 Cannot produce Class A product because primary sludge is not sent to TCHP 	 Highest heat requirement, relying on high pressure steam for heat For cake production, requires multiple dewatering steps 	 Stand-alone process requires high chemical addition Lystek re-circ may increase digester sizing Uses steam for additional heat after digestion

Drying Technology Comparison

	Belt Dryer	Paddle Dryer	Fluidized Bed
Advantages	 Lower temp Simple operation Potential reuse of waste heat May not require biosolids cooling 	 Smaller footprint Single pass process Minimum air handling Lower vertical profile 	 Smaller footprint High quality end product Good thermal efficiency
Disadvantages	 Large footprint Less desirable end product 	 High temperatures Non-uniform end product Internal moving parts 	 High temperatures Requires recirc. of dried product Potential for short circuiting

Equipment Sizing

- Solids production is continuous, but operation of solids treatment equipment may not be
- Equipment and storage sizing must be selected based on the desired operating strategy

Parameter	Units	4 Hours/Day	8 Hours/Day	12 Hours/Day
Daily Solids Production	ppd	15,000	15,000	15,000
Hours Operated per Day	hr	4	8	12
Equipment Loading	pph	3,750	1,875	1,250

Economic Analysis

- Capital Cost
- Annual Operating Costs:
 - 0&M
 - Disposal
 - Polymer/Chemical
 - Electricity
 - Natural Gas
- Potential for revenue generation or energy offset
- Total Present Worth

Total Present Worth

Non-Economic Analysis

Qualitatively discuss advantages and disadvantages

OR

Select key performance criteria and assign a score for the performance of each alternative

Potential Non-Economic Factors				
Odor generation	Flexibility for future changes			
Land availability for biosolids Plant traffic				
Regulatory acceptance	Renewable use of biosolids			
Operational simplicity	Construction consideration			
Operational redundancy	Staffing level			

Non-Economic Scoring

		Alt 1	Alt 2	Alt 3	Alt 4A	Alt 4B	Alt 5
Non-Economic Factor	Weight	Upgraded Status Quo	Anaerobic Digestion	Anaerobic Digestion + Pondus	Lystek	Anaerobic Digestion + Lystek	Drying
Raw Score (1 to 5)							
Staffing Levels	5%	5	4	4	5	4	1
Ease of Construction	5%	3	3	3	5	2	1
Community Impact	25%	5	2	3	5	3	1
Operational Impact	20%						
Simplicity		5	3	1	4	1	2
Redundancy		1	2	2	4	4	5
Regulatory Acceptance		2	2	2	4	4	5
Method of Disposal	25%	1	2	2	3	4	5
Flexibility for the Future	20%						
Process Changes		1	2	2	5	2	5
Regulatory Changes		1	3	2	5	4	5
Economic Changes		2	2	2	3	3	4
Sustainability Changes		3	5	5	3	5	3
Combined Weighted Scores	100%	2.78	2.42	2.48	4.10	3.35	3.25

Selecting a Solution

Phased Approach

- Short term needs
- Long term goals
- Intermediate steps

Community Outcomes

	East Lansing	Holland	Grand Haven
Short term	Thickening and dewatering upgrades	Anaerobic Digestion	Thickening upgrades
Long term	Anaerobic digestion	TCHP or Drying	Lystek
Decision factors	 Local landfill provided low landfilling fees Many upgrades needed to existing equipment Desire for environmentally sustainable process 	 Anaerobic digestion provided lowest 20 year TPW Space constraints Potential for energy production Flexibility for future improvements 	 Largest drivers were reduction in total load out volume and multiple disposal outlets Available building space for Lystek

General Outcomes

- Detailed planning document
- Identification of current deficiencies and plans to address them
- Understanding of community and facility-specific decision factors
- Budgetary guidance

Lessons Learned

- Consider number of alternatives to evaluate versus level of detail during evaluation
- Assess "no-go's" early in process
- Understand stakeholder's needs when selecting non-economic criteria
- Consider final product: thoroughly document decisions, assumptions, and reasoning as you go
- Consider travel: example installations, conferences, equipment exhibitions

