MWEA Biosolids Conference # Biosolids Facility Planning: One Approach, Three Communities March 13, 2019 #### Outline - Background - Facility Overviews - Driving Factors - Approach - Key Alternatives Comparison - Outcomes - Lessons Learned ## Biosolids Facility Planning **Goal**: provide a planning document that guides upgrades to a water reclamation facility's solids treatment train over time. - Understand future solids production - Evaluate potential biosolids treatment technologies - Plan implementation strategy - Prepare biosolids facility plan report ### Three Communities #### **East Lansing** - Biosolids Master Plan completed in 2017 - Average day flow: 12.3 MGD - Design capacity: 18.75 MGD - Conventional Activated Sludge #### Solids Handling System #### Holland - Biosolids Alternative Evaluation completed in 2018 - Average day flow: 9 MGD - Design capacity: 12 MGD - High-Purity Oxygen Activated Sludge System #### Solids Handling System #### **Grand Haven** - Biosolids Alternative Evaluation completed in 2018 - Average day flow: 3.7 MGD - Design capacity: 6.67 MGD - Conventional Activated Sludge #### Solids Handling System # **Driving Factors** | East Lansing | Holland | Grand Haven | |--|---|---| | Aging equipment Increase process redundancy Potential to reduce biosolids disposal costs Improve WRF sustainability | Increasing solids load Reaching capacity of existing storage Rising landfilling fees Restrictions on solids sent to landfill | Reaching capacity of existing storage due to limited biosolids load out Desire for increased disposal flexibility Interest to move away from lime stabilization | #### Biosolids Facility Plan Approach - Assess existing system - "Universe of Possibilities" - Short List of Potential Solutions - Economic and non-economic evaluation of potential solutions - Selection of final solutions - Implementation planning #### **Assess Existing System** - What is the expected solids loading over the planning period? - Existing flow or loading projections - Projected population growth - What is the capacity of existing equipment? - Is the existing equipment capacity sufficient for the projected solids loading? - What are existing process deficiencies? - Equipment age - Consistent operating challenges - Frequent repairs #### "Universe of Possibilities" - Thickening Equipment - Dissolved Air Flotation - Gravity Belt - Rotary Drum - Centrifuge - Dewatering Equipment - Belt Filter Press - Screw Press - Rotary Fan Press - Centrifuge - Digestion - Aerobic - Anaerobic - TPAD - Two-Phase Acid - Thermal Chemical Hydrolysis - Lystek - Cambi - Pondus - Lime Stabilization - Composting - Drying - Rotary Drum - Belt - Paddle - Fluidized Bed #### **Short List of Potential Solutions** - Thickening Equipment - Dissolved Air Flotation - Gravity Belt - Rotary Drum - Centrifuge - Dewatering Equipment - Belt Filter Press - Screw Press - Rotary Fan Press - Centrifuge - Digestion - Acrobic - Anaerobic - TPAD - Two-Phase Acid - Thermal Chemical Hydrolysis - Lystek - Cambi - Pondus - Lime Stabilization - Composting - Drying - Rotary Drum - Belt - Paddle - Fluidized Bed ## Alternatives Comparison - Thickening - Dewatering - Anaerobic Digestion - Thermal Chemical Hydrolysis Processes - Drying # Thickening Technology Comparison | | Dissolved Air | Gravity Belt | Rotary Drum | Centrifuge | |---------------|--|---|---|--| | Advantages | Continuous,
unattended
operationLow polymer
usage | Tried and true technology Non-enclosed process – can easily observe thickening | Totally enclosed – dry environment Fully automated | Enclosed design Low polymer usage Fully automated | | Disadvantages | Large footprint Requires compressed air | Wet environment High polymer requirements | High polymer usage | May depend on sludge characteristics High energy requirement Higher capital cost | # Dewatering Technology Comparison | | Belt Press | Screw Press | Rotary Fan Press | Centrifuge | |---------------|---|--|---|--| | Advantages | Tried and true technology Low energy use Lower capital and O&M cost | Enclosed designLow energy useFully automated | Enclosed designLow energy use | Enclosed design Low polymer usage Fully automated | | Disadvantages | Non-enclosed design Sensitive to incoming sludge characteristics | Large polymer demandRequires wash water | High capital and operating costs Not easily scalable for larger facilities | May depend on sludge characteristics High energy requirement Higher capital cost | ## **Anaerobic Digestion** #### <u>Advantages</u> - Energy generation - Reduces mass of biosolids for storage and land application - ✓ No chemical usage #### <u>Disadvantages</u> - Large footprint - Large capital cost - Increased operational complexity - Class B application requirements/constraints - Odor concerns # Thermal Chemical Hydrolysis - Anaerobic digestion pretreatment techniques that convert organic solids into soluble compounds by applying heat and pressure - Increases digestibility, reduces digester sizing, increases biogas production, changes biosolids viscosity, and provides biosolids stabilization - Commercialized processes provide equipment packages for thermal hydrolysis - Pondus, Cambi, Lystek # TCHP Technology Comparison | | Pondus | Cambi | Lystek | |---------------|---|--|--| | Advantages | Minimizes reactor volume by treating only WAS Utilizes a hot water supply as the heating source | No chemical addition
required Pre-heating from
Cambi may be
sufficient to fully
heat digester | Potential for stand-
alone treatment
process High solids content
Class A liquid
product | | Disadvantages | Cannot produce Class A product because primary sludge is not sent to TCHP | Highest heat requirement, relying on high pressure steam for heat For cake production, requires multiple dewatering steps | Stand-alone process
requires high
chemical addition Lystek re-circ may
increase digester
sizing Uses steam for
additional heat after
digestion | # Drying Technology Comparison | | Belt Dryer | Paddle Dryer | Fluidized Bed | |---------------|--|--|--| | Advantages | Lower temp Simple operation Potential reuse of waste heat May not require biosolids cooling | Smaller footprint Single pass process Minimum air
handling Lower vertical profile | Smaller footprint High quality end
product Good thermal
efficiency | | Disadvantages | Large footprint Less desirable end
product | High temperatures Non-uniform end
product Internal moving
parts | High temperatures Requires recirc. of
dried product Potential for short
circuiting | ## **Equipment Sizing** - Solids production is continuous, but operation of solids treatment equipment may not be - Equipment and storage sizing must be selected based on the desired operating strategy | Parameter | Units | 4 Hours/Day | 8 Hours/Day | 12 Hours/Day | |-------------------------|-------|-------------|-------------|--------------| | Daily Solids Production | ppd | 15,000 | 15,000 | 15,000 | | Hours Operated per Day | hr | 4 | 8 | 12 | | Equipment Loading | pph | 3,750 | 1,875 | 1,250 | #### **Economic Analysis** - Capital Cost - Annual Operating Costs: - 0&M - Disposal - Polymer/Chemical - Electricity - Natural Gas - Potential for revenue generation or energy offset - Total Present Worth #### **Total Present Worth** #### Non-Economic Analysis Qualitatively discuss advantages and disadvantages OR Select key performance criteria and assign a score for the performance of each alternative | Potential Non-Economic Factors | | | | | |---|--------------------------------|--|--|--| | Odor generation | Flexibility for future changes | | | | | Land availability for biosolids Plant traffic | | | | | | Regulatory acceptance | Renewable use of biosolids | | | | | Operational simplicity | Construction consideration | | | | | Operational redundancy | Staffing level | | | | # Non-Economic Scoring | | | Alt 1 | Alt 2 | Alt 3 | Alt 4A | Alt 4B | Alt 5 | |----------------------------|--------|------------------------|------------------------|------------------------------------|--------|------------------------------------|--------| | Non-Economic Factor | Weight | Upgraded
Status Quo | Anaerobic
Digestion | Anaerobic
Digestion +
Pondus | Lystek | Anaerobic
Digestion +
Lystek | Drying | | Raw Score (1 to 5) | | | | | | | | | Staffing Levels | 5% | 5 | 4 | 4 | 5 | 4 | 1 | | Ease of Construction | 5% | 3 | 3 | 3 | 5 | 2 | 1 | | Community Impact | 25% | 5 | 2 | 3 | 5 | 3 | 1 | | Operational Impact | 20% | | | | | | | | Simplicity | | 5 | 3 | 1 | 4 | 1 | 2 | | Redundancy | | 1 | 2 | 2 | 4 | 4 | 5 | | Regulatory Acceptance | | 2 | 2 | 2 | 4 | 4 | 5 | | Method of Disposal | 25% | 1 | 2 | 2 | 3 | 4 | 5 | | Flexibility for the Future | 20% | | | | | | | | Process Changes | | 1 | 2 | 2 | 5 | 2 | 5 | | Regulatory Changes | | 1 | 3 | 2 | 5 | 4 | 5 | | Economic Changes | | 2 | 2 | 2 | 3 | 3 | 4 | | Sustainability Changes | | 3 | 5 | 5 | 3 | 5 | 3 | | Combined Weighted Scores | 100% | 2.78 | 2.42 | 2.48 | 4.10 | 3.35 | 3.25 | ## Selecting a Solution ## Phased Approach - Short term needs - Long term goals - Intermediate steps # **Community Outcomes** | | East Lansing | Holland | Grand Haven | |---------------------|--|--|--| | Short
term | Thickening and dewatering upgrades | Anaerobic Digestion | Thickening upgrades | | Long
term | Anaerobic digestion | TCHP or Drying | Lystek | | Decision
factors | Local landfill provided low landfilling fees Many upgrades needed to existing equipment Desire for environmentally sustainable process | Anaerobic digestion provided lowest 20 year TPW Space constraints Potential for energy production Flexibility for future improvements | Largest drivers were reduction in total load out volume and multiple disposal outlets Available building space for Lystek | #### **General Outcomes** - Detailed planning document - Identification of current deficiencies and plans to address them - Understanding of community and facility-specific decision factors - Budgetary guidance #### Lessons Learned - Consider number of alternatives to evaluate versus level of detail during evaluation - Assess "no-go's" early in process - Understand stakeholder's needs when selecting non-economic criteria - Consider final product: thoroughly document decisions, assumptions, and reasoning as you go - Consider travel: example installations, conferences, equipment exhibitions